Chapter 2
Purpose
The purpose of this document is to provide a brief overview of the codebase regarding chapter 2. It is not about the detailed description of the principles or how the code works since this is covered by the book.
The code of this chapter is to support the example of two flock of boids on two different processes, using sockets for the transmission of state information to permit synchronization. The processes can in independent Java™ Virtual Machines (JVM) on the same host machine, or preferably on two separate host machines with different IP addresses.
Both binaries (.classes) and source (.java) of the codebase are distributed in the same zip file denominated chapter2.zip. The file contained two directories, one for the binaries (/bin) consisting of the classes and the JAR file; the other directory contains the source files (/src).
For chapter 2, there are three variations of the main application, depending on how the network component of the system is setup. All three have the prefix of Bootstrap:
· BootstrapTCP : This class creates a system that uses TCP for the network.
· BootstrapUDP : This class creates a system that uses UDP for the network
· BootstrapUDPFilter : This class creates a system that uses UDP for the network, but stalls processing for a given period of time to emulate delays on the network
Codebase Overview
The remainder of the codebase for chapter 2 is divided into the following classes :
· Boid : This class encapsulates the data concerning a single boid in the flock, defining its geometry and keeping track of its position and velocity.
· Boids : This class is the core of the system. It implements the IUniverseBuilder interface, thus creating a 3D environment and a flock of boids. The actual behaviour is delegated to the FlockBehaviour. The class also has access to a Network object, which is responsible for the distribution of events to and from a single remote host.
· Flock : This class encapsulates the all the boids of the simulation.
· FlockBehaviour : This class is responsible for the behaviour of the flock of boids.
· IUniverseBuilder : This interface defines the methods necessary to build a 3D environment.
· Network : This class is responsible for sending and receiving messages over the network. It operates the receiving within its own thread thus running in parallel to the rendering. When receiving it has a reference directly to a Boids object, thus being able to update the local representation of the remote flock of boids. The actual details of the network operations are delegated to subclasses.
· TCPNetwork : This class is a subclass of the Network and is responsible for transmitting messages over streams using TCP.
· UDPFilterNetwork : This class is a subclass of the UDPNetwork and is responsible for introducing a delay to mimic latency of the network. The result will be discrepancy of state between the local and remote hosts concerning the state of the coupled flock of boids that is inversely proportional to the speed of the processor.
· UDPNetwork : This class is a subclass of the Network and is responsible for transmitting messages over streams using UDP.
· UniversePanel : This class is responsible for setting up the actual 3D environment in Java3D.
Requirements
The code to run requires Java3D™ version 1.5.2. It is necessary to ensure that the appropriate 32bit or 64bit is installed depending on the requirements of the host machine. The extension Java3D has been discontinued, but is supported by the Java3D community and can be downloaded from:
java3d.dev.java.net/binary-builds.html
It is important to have Java3D installed since the rendering uses the extension for all the rendering of the 3D environment. The installation instructions are available with the download of the library.
The code was developed and tested with the latest version of the java programming language – version 6, which can be downloaded from:
java.sun.com/javase/downloads/
For executing the binaries, one just needs the Java Runtime Environment (JRE) 1.6, but for development, it is recommended to install the Java Development Kit (JDK) 1.6. The latter is also available with the NetBeans Integrated Development Environment (IDE).
Execution
The execution of the boids example from Chapter 2 from the command line has the same format of the arguments irrespective of the application variation being executed.
Table 1 - List of arguments
	Argument N.
	Designation
	Description

	1
	Number of boids
	The total number of boids of the local flock

	2
	Destination IP
	The IP address of the remote host where the system will send messages to.

	3
	Local Port
	The port number of the local host where the system will receive messages from the network.

	4
	Destination Port
	The port number of the remote host where the system will send messages to.

So making the assumption that both the JRE6 and J3D have been installed correctly, and the code was unpacked into directory C:\book\chap2\, a possible command prompt for the BootstrapUDP will be:
C:\>java –cp .;”c:\book\chap2\bin\boids2.jar” BootstrapUDP 5 “192.160.1.95” 6000 5000
There are four arguments to use with BootstrapUDP, as outlined in the Table I, so the above command line implies that the remote host has IP address 192.160.1.95 with port number 5000. For the local host, the designated port number is 6000.
The result should be something similar to the screenshot of Figure 1.
[image:]
It is important to mention that the codebase assumes that there is only IP network address per host, thus there is no need to designate the local IP address. However, it should be simple to add an additional argument to specify the local IP address and binding the socket to this particular IP.

image1.png

