
IEEE Virtual Reality 2011

Introduction to
Networked Graphics

Anthony Steed

Part 3:
Latency
Scalability

  Latency
  - Mitigation strategies
  - Playout delays, local lag and dead reckoning
  Scalability
  - Management of awareness
  - Interest specification
  - Server partitioning

IEEE Virtual Reality 2011

Introduction to
Networked Graphics

Latency

  Latency
  - Mitigation strategies
  - Playout delays, local lag and dead reckoning

DUMB CLIENT AND LOCKSTEP
SYNCHRONISATION

Naïve (But Usable) Algorithms

  Most naïve way to ensure consistency is to allow
only one application to evolve state at once

  One application sends its state, the others wait to
receive, then one proceeds

  Is a usable protocol for slow simulations, e.g. games
 Not that slow – moves progress at the inter-client

latency

  Potentially useful in situations where clients use very
different code, and where clients are “un-
predictable”

Total Consistency (Alternating Execute)

T = t
Acknowledge every update
Propagation delay is 100ms

Client A Client B

Total Consistency (Alternating Execute)

Client A Client B

T = t + 50ms

Total Consistency (Alternating Execute)

Delta T

Client A Client B

T = t + 50 ms + 100 ms
Delta T (latency) is 100ms

Total Consistency (Alternating Execute)

T = t + 50ms + 100ms + 50ms

Client A Client B

Total Consistency (Alternating Execute)

T = t + 50ms + 100ms + 50ms + 100ms
T = t + 300ms

After 300ms Client A may move again!!!

Client A Client B

Delta T

Lock-Step (1)

  If all clients can deterministically on the input data

  Then a more useful form lock-step for NVEs & NGs
is that everyone exchange input, proceed once you
have all the information from other clients

  But for many simulations, each step is only
determined by user input, so can just communicate
input

DOOM (1) – iD Software

Doom ClientA

Read
Input

Rendering

Receive
Input

Simulate
Doom ClientB

Read
Input

Rendering

Receiv
e

Input

Simulate

Doom ClientC

Read
Input

Rendering

Receive
Input

Simulate

Lock-Step (2)

  If the simulation is complex or non-deterministic, use
a server to compute the state

  Clients are locked to the update rate of the server
  Note that own input is delayed

Quake ClientA

Read
Input

Rendering

Quake Server

Receive
Input

Simulate

Quake ClientB

Read
Input

Rendering

Mouse
Keyboard

Draw
Lists,
Game
State

Mouse
Keyboard

Draw
Lists,
Game
State

Quake (1 Pre-QuakeWorld) – iD Software

CONSERVATIVE SIMULATIONS

Conservative Simulations

  Lock-step are simple examples of conservative
simulations

  Usually, there is no side-effect of the event you
were waiting for

  E.G. in Quake, a lot of the time the other player’s
position is not important
 Why wait for events? Why not just proceed
 Answer is that you diverge IF you got shot

  However, for many simulations you can decouple
event sequences

ClientA

MessageI

Client=B
Time=11.1

MessageI+1

Client=C
Time=13.5

MessageI+2

Client=B
Time=13.6

MessageI+3

Client=C
Time=18.0

MessageI+4

Client=D
Time=18.2

ClientB

ClientC

ClientD

Message
Queue

In a conservative simulation, events can be played out, if the simulation can know
that another event cannot precede the ones it wants to play out. In this case the
first three messages can be played out, but the fourth and fifth cannot.

Notes

  Sufficient for many simulations
  Also known as pessimistic simulations
  Lots of theory about this: deadlocking, Chandy/

Misra/Bryant lookahead null message algorithm
  See: Fujimoto, R. (2000) Parallel and Distributed

Simulation Systems

TIME

Time

  Real-time synchronization needs a notion of time
  IF every event could be time stamped you could

accurately reconstruct the recent past
  In reality clocks on machines can not be

synchronized
  Can get close with Network Time Protocol
  Still not sufficient, applications tend to measure

inter-client latency using round-trip times
 

Virtual Time

  Sometimes it is sufficient to be able to order events
  Lamport’s Virtual Time is really an event counter
  An event can indicate which events caused it, and

which it depends on
  Thus, e.g. say EventExplode	
 caused	
 EventFire	

  If EventExplode	
 says	
 “EventFire	
 caused	
 me”	
 then	

anyone	
 who	
 has	
 EventExplode	
 waits	
 for	
 EventFire	
 	

  This can be implemented for simple situations with
just incremental counting (EventN+1	
 is held until
EventN	
 is played)	

ClientA	

ClientB	

ClientC	

EventFire

EventExplode

EventExplode	
 is	
 delay	
 at	
 ClientC	
 un@l	
 aAer	
 	
 EventFire	

A causal ordering scheme prevents ClientC from seeing an explosion before the fire
event that caused it. In this case, the timeline and the ticks on the timeline only
serve to indicate the passage of wall clock time, they don’t indicate time steps.

For Large Simulations

  Practically this can be achieved with vector clocks
  Each simulation keeps an event order of the events

it received, and then states which events it had
received when it generated an event

ClientA	

ClientB	

ClientC	

EventFire
(0,1,0)

EventExplode
(1,1,0)

EventFire
(2,1,1)

EventExplode
(2,1,0)

OPTIMISTIC ALGORITHMS

Optimistic Algorithms

  Conservative simulations tend to be slowed paced
  Optimistic algorithms play out events as soon as

possible
  Of course, this means that they can get things

wrong:
 They may receive an event that happened in the past
 To fix this they rollback by sending UNDO events
 For many simulations UNDO is easy (just move

something)

ClientA	
 ClientB	

	

Lock
Door

Open
Door

ClientC	

	

Add
Zombies

Remove
Zombies

Close
Door

t0	

t1	

t2	

t3	

t4	

CLIENT PREDICT AHEAD

Predict Ahead

  A form of optimism: assume that you can predict
what a server (or another peer) is going to do with
your simulation

  Very commonly applied in games & simulations for
your own player/vehicle movement

  You assume that your control input (e.g. move
forward) is going to be accepted by the server

  If it isn’t, then you are moved back Note this isn’t
forwards in time but a prediction of the current
canonical state (which isn’t yet known!)

ClientA	
 Server	

P0	
 P1	

Move
P0 to P1

Move?
P1 to P2

Move?
P2 to P3

Move?
P3 to P4

Move?
P0 to P1

Move
P1 to P2

Move
P2 to P3

P2	
 P1	

P3	
 P2	

P4	
 P3	

P0	
 P1	

P2	
 P1	

P3	
 P2	

ClientA	
 Server	

P0	
 P1	

Move
P0 to P1

Move?
P1 to P2

Move?
P2 to P3

Move?
P0 to P1

FailMove
P1 to Q1

FailMove
P1 to Q1

P2	
 P1	

P3	
 P2	

Q1	

P0	
 P1	

Q1	
 P1	

P3	
 P2	
 Q1	

EXTRAPOLATION ALGORITHMS

Extrapolation Algorithms

  Because we “see” the historic events of remote
clients, can we predict further ahead (i.e. in to their
future!)

  This is most commonly done for position and velocity,
in which case it is known as dead-reckoning

  You know the position and velocity at a previous
time, so where should it be now?

  Two requirements:
 Extrapolation algorithm: how to predict?
 Convergence algorithm: what if you got it wrong?

Dead Reckoning: Extrapolation

  1st order model

  2nd order model

When to Send Updates

  Note that if this extrapolation is true you never
need to send another event!

  It will be wrong (diverge) if acceleration changes
  BUT you can wait until it diverges a little bit before

sending events
  The sender can calculate the results as if others

were interpolating (a ghost), and send an update
when the ghost and real position diverge

1st	
 Order	
 Model	

2nd	
 Order	
 Model	

a)	
 Player	
 model	
 sending	

three	
 	

updates	

b)	
 Ghost	
 model	
 path	

without	

	
 blending	

to	

t1	

t2	

c)	
 Old	
 ghost	
 model	
 and	
 new	

ghost	

model	
 at	
 t1	

Convergence Algorithm

  When they do diverge, you don’t want the receiver
to just jump: smoothly interpolate back again

  This is hard:
 Can linearly interpolate between old and new position

over time, but vehicles don’t linearly interpolate (e.g.
would mean slipping

d)	
 Blending	
 between	
 the	
 old	
 ghost	
 and	

new	
 ghost	
 	

over	
 several	
 frames	

e)	
 Ghost	
 model	
 path	
 with	

blending	

Convergence Algorithm

  So you could steer the vehicle to correct its own
position
 This has frequency instabilities
 Deals badly with obstacles as the interpolated path

isn’t the same as the real path

a)	
 Old	
 ghost	
 posi@on	
 at	
 t0,	
 new	
 ghost	
 posi@on	

at	
 t0	
 and	
 	

new	
 ghost	
 posi@on	
 at	
 t0+tΔ	

t0	

New	
 ghost	

t0+tΔ	

New	
 ghost	
 t0	

Old	
 ghost	
 t0	

b)	
 DoQed	
 line	
 shows	
 the	
 planned	
 path	
 to	

reach	
 the	
 target	
 posi@on	
 	
 and	
 direc@on	

a)	
 Player	
 model	
 showing	
 the	
 @mings	
 of	
 dead-­‐reckoning	

updates	
 at	
 the	
 peaks	
 of	
 a	
 periodic	
 mo@on	

Update	
 at	
 t0	

Update	
 at	
 t1	

b)	
 On	
 arrival	
 of	
 an	
 update	
 message,	
 the	
 ghost	
 model	

plans	
 to	
 converge	
 the	
 current	
 ghost	
 model	
 posi@on	

with	
 an	
 extrapola@on	
 of	
 the	
 received	
 posi@on	

Correct	
 player	
 model	

path	

Convergence	

path	
 Ghost	
 model	
 loca@on	
 at	

t0	

Player	
 model	
 update	
 at	

t0	

Extrapola@on	
 of	
 player	

model	

c)	
 On	
 the	
 next	
 update	
 message	
 the	
 ghost	
 model	
 is	

out	
 of	
 phase	
 with	
 the	
 player	
 model.	
 T	

to	

t1	

Player	
 model	
 update	

at	
 t1	

a)	
 Player	
 model	
 showing	

the	
 object	
 avoiding	
 the	
 wall	

Path	
 of	
 ghost	

model	
 aAer	

update	
 at	
 t0	

b)	
 AAer	
 the	
 update	
 at	
 t1	

the	
 ghost	
 model	
 cannot	

converge	
 	

INTERPOLATION, PLAYOUT DELAYS AND LOCAL
LAG

Interpolation

  Extrapolation is tricky, so why not just interpolate?
  Just delay all received information until there are

two messages, and interpolate between them
  Only adds delay equal to the time between sending

packets

Sender	
 Receiver	

P1	

P2	

P3	

P4	

t1	

t2	

t3	

t4	

P0 P1 P2 P3

t0	
 t1	
 t2	
 t3	

Interpolate	

P0→P1	

Playout	
 delay	

Non-Linear Interpolation

  Need to consider several aspects
  Object movement is not linear, so could use quadric,

cubic, etc. by keeping three or more updates

Sender	
 Receiver	

P1	

P2	

P3	

P4	

t1	

t2	

t3	

t4	

t5	

t6	

Playout Delays

  Note that jitter is not uniform, you need to be
conservative about how long to wait (if a packet is
late you have no more information to interpolate, so
the object freezes)

  NVEs and NGs thus sometimes use a playout delay
  Note that if you use a playout delay on the clients

own input, then all clients will see roughly the same
thing at the same time!

  A strongly related technique is bucket
synchronisation, pioneered in the seminal MiMaze

t0	
 t1	
 t2	
 t3	

Interpolate	

P0→P1	

Maximum	
 latency	

P0 P1 P2 P3

Playout	
 delay	

Sender	

ClientA	

ClientB	

Playout Delay

t0	
 t1	
 t2	
 t3	

Interval	
 (Tα)	

EA1

Playout	
 delay	
 (TΔ)	

ClientA	

ClientB	

ClientC	

EC1 EC2

EB1 EB2

t4	

Bucket Synchronization

PERCEPTION FILTERS

Perception Filters

  In these techniques, the progress of time is altered
at different clients

  Clients choose to predict ahead or delay playout
depending on the meaning and their expected
interaction

ClientA	

ClientB	

CASE STUDY: BURNOUT ™ PARADISE

Burnout™ Paradise

Driving sub-state
(default)

Crashing sub-state

Player 1 Timeline

Player 2 Timeline
Free
Driving
State

Time

Race start
announceme
nt

Race start Awaiting
Results State
(non-
interactive)

Awards
State
(non-
interactive)

Race State

IEEE Virtual Reality 2011

Introduction to
Networked Graphics

Scalability

  Scalability
  - Management of awareness
  - Interest specification
  - Server partitioning

GOALS FOR SCALABILITY

Interest Specification

  A user is NOT an omniscient being
  A user is NOT interested in every event
  A client is NOT able to process everything

•  Just give each client enough to instil the user’s
illusion of an alternate reality
•  Interest: visibility, awareness, functional, …
•  Network and computational constraints

Awareness Categories

  Primary awareness
 Those users you are collaborating with
 Typically near by, typically highest bandwidth

available

  Secondary awareness
 Those users that you might see in the distance or nearby
 Can in principle interact with them within a few seconds

by movement

  Tertiary awareness
 All other users accessible from same system (e.g. by

teleporting to them)

System Goals

  Attempt to keep
 overall system utilization to a manageable level
 client inbound bandwidth at a manageable level
 client outbound bandwidth to a manageable level

  To do this
 Have clients discard received information
 Have the system manage awareness
 Have clients generate information at different levels of

detail

Managing Awareness

  A complex distributed problem
  Users’ expressions of interest in receiving

information balanced against system’s and other
clients’ capabilities

  Awareness scheme is partly dependent on the
networking architecture, but most awareness
management schemes can be applied to different
architectures

  Spatial layout is the primary moderating factor on
awareness

Message
Filtering Application

Filter on
Receive

Network
Routing

Application

Filter on
Send

Network
Routing

Message
Routing

Network
Routing

Message
Routing

Network
Routing

Network
Routing

SPATIAL PARTITIONING

Spatial Partitions

  Global Partitions
 Static Grid
 Hierarchical Grid
 Locales

  Local Partitions
 Aura
 Visibility
 Nearest Neighbours

Global Partitions: Static Cells

•  1 Cell = 1 Group

•  Hexagon regular shape

•  Tied into the grid – static

•  Send current cell

•  Receive neighbours

•  Any architecture (distributed)

Global Partitions: Hierarchal Grid

•  1 Cell = 1 Group

•  Square cells

•  Send current cell

•  Receive current cell

•  Any architecture (distributed)

•  Exceeds threshold, expand

Threshold = 5

Global Partitions: Irregular

Global Partitions: Locales

•  1 locale = 1 group

•  Locale is arbitrary shape

•  Locale placement is static

•  Associated transform matrix

•  Any architecture (distributed)

Global Partitions: Locales

•  1 locale = 1 group

•  Locale is arbitrary shape

•  Locale placement is static

•  Associated transform matrix

•  Any architecture (distributed)

Global Partitions: Locales

•  1 locale = 1 group

•  Locale is arbitrary shape

•  Locale placement is static

•  Associated transform matrix

•  Any architecture (distributed)

Local Partitions: Aura, Focus, Nimbus

  Instead of grouping users by a global cell, group by
their own interest overlap

  Aura, Focus, Nimbus (Spatial Model) pioneered in
the MASSIVE and DIVE systems

Aura

Visual
Focus

Visual
Nimbus

Audio
Focus

Audio
Nimbus

Local Partitions: Auras

UserA UserB

Local Partitions: Auras

Local Partitions: Visibility

B

•  Line of sight

•  Entity visible = group

•  Client/Server

A

C

Local Partitions: Visibility

  In real environment our focus is most severely limited
by the physical environment: we can’t see around
walls, we can’t hear (or see) over long distances

A B C

D E F

G H I

A

B
C

F
E

D

G H I

Cells Portals

Local Partitions: Visibility

A B C D E F G H I

- 1 1 0 1 0 0 0 0 A

- 1 1 1 1 0 0 0 B

- 0 1 1 0 0 0 C

- 1 0 1 1 0 D

- 0 1 0 0 E
- 0 0 0 F

- 1 1 G

- 1 H

- I

Full PVS

A B C

D E F

G H I

PVSA

Spatial Partitions: Visibility

A B C

D E F

G H I

User1

User2 User4

User3

A B C

D E F

G H I

User1

User2 User4

User3

Spatial Partitions: Visibility

Spatial Partitions: Visibility

Local Partitions: Nearest Neighbours

•  1 group = quorum

•  Computational/Network
constraints

•  Client/Server

Local Partitions: Nearest Neighbours

•  1 group = quorum

•  Computational/Network
constraints

•  Client/Server

MANAGING HANDOVER

SERVER INTERACTIONS

Server Interactions

  Server system introduce two big problems
  How do two proximate users on adjacent servers

interact?
 Sometimes just not allowed – long twisty roads between

server regions where you never meet other players

  How do you actually hand over a player from one
server to another
 Need to move responsibility for interaction
 Possibilities needs new network connections

UserA UserB

ZoneA ZoneB
MirrorAB MirrorBA

View on ServerA View on ServerB

Proxy
of
UserA

MULTI-SERVER MANAGEMENT

Practical Systems

  A system such as Second Life™ utilizes a regular
grid layout with one server per region
 Regions are laid out on a mostly-contiguous map

  However is a game session, far too many players
want to access a specific game content

  A game shard is a complete copy of a system, you
connect to one system and see one player cohort

  A game instance is similar, but is replication of a
particular area (e.g. dungeon) to support one group
of players within a cohort. Often created on
demand.

ServerC

ServerC

Master
Server

ServerA

New
Process

1 2

3

ServerB

Game Shards

ServerD

ServerC

Master
Server

ServerA

New
Process

1 2

3
ServerB

Game Regions

ServerC ServerC ServerC

Master
Server

ServerA

1 2

3
ServerB

ServerD

New
Process 4

ServerC

Game Regions & Instances

SUMMARY

  Latency and dealing with time is a huge issue in
NVEs and NGs with a variety of solutions
 Conservative solutions v. rollback v.playout delays
 Choice depends on game play

  Scalability depends on a choice of awareness
mechanism
 Requires a logical scalability mechanism
 Partitioning over users

  Part 4 will look at application support, tools and
future research issues

