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DUMB CLIENT AND LOCKSTEP 
SYNCHRONISATION 



Naïve (But Usable) Algorithms 

  Most naïve way to ensure consistency is to allow 
only one application to evolve state at once 

  One application sends its state, the others wait to 
receive, then one proceeds 

  Is a usable protocol for slow simulations, e.g. games 
 Not that slow – moves progress at the inter-client 

latency 

  Potentially useful in situations where clients use very 
different code, and where clients are “un-
predictable” 



Total Consistency (Alternating Execute) 

T = t 
Acknowledge every update 
Propagation delay is 100ms 

Client A Client B 



Total Consistency (Alternating Execute) 

Client A Client B 

T = t + 50ms 



Total Consistency (Alternating Execute) 

Delta T 

Client A Client B 

T = t + 50 ms + 100 ms 
Delta T (latency) is 100ms 



Total Consistency (Alternating Execute) 

T = t + 50ms + 100ms + 50ms 

Client A Client B 



Total Consistency (Alternating Execute) 

T = t + 50ms + 100ms + 50ms + 100ms 
T = t + 300ms 

After 300ms Client A may move again!!! 

Client A Client B 

Delta T 



Lock-Step (1) 

  If all clients can deterministically on the input data 

  Then a more useful form lock-step for NVEs & NGs 
is that everyone exchange input, proceed once you 
have all the information from other clients 

  But for many simulations, each step is only 
determined by user input, so can just communicate 
input 



DOOM (1) – iD Software 
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Lock-Step (2) 

  If the simulation is complex or non-deterministic, use 
a server to compute the state 

  Clients are locked to the update rate of the server 
  Note that own input is delayed 
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Quake (1 Pre-QuakeWorld) – iD Software 



CONSERVATIVE SIMULATIONS 



Conservative Simulations 

  Lock-step are simple examples of conservative 
simulations 

  Usually, there is no side-effect of the event you 
were waiting for 

  E.G. in Quake, a lot of the time the other player’s 
position is not important 
 Why wait for events? Why not just proceed 
 Answer is that you diverge IF you got shot 

  However, for many simulations you can decouple 
event sequences 
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In a conservative simulation, events can be played out, if the simulation can know 
that another event cannot precede the ones it wants to play out. In this case the 
first three messages can be played out, but the fourth and fifth cannot.  



Notes 

  Sufficient for many simulations 
  Also known as pessimistic simulations 
  Lots of theory about this: deadlocking, Chandy/

Misra/Bryant lookahead null message algorithm 
  See: Fujimoto, R. (2000) Parallel and Distributed 

Simulation Systems 



TIME 



Time 

  Real-time synchronization needs a notion of time 
  IF every event could be time stamped you could 

accurately reconstruct the recent past 
  In reality clocks on machines can not be 

synchronized 
  Can get close with Network Time Protocol 
  Still not sufficient, applications tend to measure 

inter-client latency using round-trip times 
    



Virtual Time 

  Sometimes it is sufficient to be able to order events 
  Lamport’s Virtual Time is really an event counter 
  An event can indicate which events caused it, and 

which it depends on 
  Thus, e.g. say EventExplode	
  caused	
  EventFire	
  
  If EventExplode	
  says	
  “EventFire	
  caused	
  me”	
  then	
  
anyone	
  who	
  has	
  EventExplode	
  waits	
  for	
  EventFire	
  	
  

  This can be implemented for simple situations with 
just incremental counting (EventN+1	
   is held until 
EventN	
  is played)	
  



ClientA	
  

ClientB	
  

ClientC	
  

EventFire 
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EventExplode	
  is	
  delay	
  at	
  ClientC	
  un@l	
  aAer	
  	
  EventFire	
  
A causal ordering scheme prevents ClientC from seeing an explosion before the fire 
event that caused it. In this case, the timeline and the ticks on the timeline only 
serve to indicate the passage of wall clock time, they don’t indicate time steps.  



For Large Simulations 

  Practically this can be achieved with vector clocks 
  Each simulation keeps an event order of the events 

it received, and then states which events it had 
received when it generated an event 
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OPTIMISTIC ALGORITHMS 



Optimistic Algorithms 

  Conservative simulations tend to be slowed paced 
  Optimistic algorithms play out events as soon as 

possible 
  Of course, this means that they can get things 

wrong: 
 They may receive an event that happened in the past 
 To fix this they rollback by sending UNDO events 
 For many simulations UNDO is easy (just move 

something) 
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CLIENT PREDICT AHEAD 



Predict Ahead 

  A form of optimism: assume that you can predict 
what a server (or another peer) is going to do with 
your simulation 

  Very commonly applied in games & simulations for 
your own player/vehicle movement 

  You assume that your control input (e.g. move 
forward) is going to be accepted by the server 

  If it isn’t, then you are moved back Note this isn’t 
forwards in time but a prediction of the current 
canonical state (which isn’t yet known!) 
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EXTRAPOLATION ALGORITHMS 



Extrapolation Algorithms 

  Because we “see” the historic events of remote 
clients, can we predict further ahead (i.e. in to their 
future!) 

  This is most commonly done for position and velocity, 
in which case it is known as dead-reckoning  

  You know the position and velocity at a previous 
time, so where should it be now? 

  Two requirements: 
 Extrapolation algorithm: how to predict? 
 Convergence algorithm: what if you got it wrong? 



Dead Reckoning: Extrapolation 

  1st order model 

  2nd order model  



When to Send Updates 

  Note that if this extrapolation is true you never 
need to send another event! 

  It will be wrong (diverge) if acceleration changes 
  BUT you can wait until it diverges a little bit before 

sending events 
  The sender can calculate the results as if others 

were interpolating (a ghost), and send an update 
when the ghost and real position diverge 



1st	
  Order	
  Model	
  



2nd	
  Order	
  Model	
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Convergence Algorithm 

  When they do diverge, you don’t want the receiver 
to just jump: smoothly interpolate back again 

  This is hard: 
 Can linearly interpolate between old and new position 

over time, but vehicles don’t linearly interpolate (e.g. 
would mean slipping 
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Convergence Algorithm 

  So you could steer the vehicle to correct its own 
position 
 This has frequency instabilities 
 Deals badly with obstacles as the interpolated path 

isn’t the same as the real path 
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INTERPOLATION, PLAYOUT DELAYS AND LOCAL 
LAG 



Interpolation 

  Extrapolation is tricky, so why not just interpolate? 
  Just delay all received information until there are 

two messages, and interpolate between them 
  Only adds delay equal to the time between sending 

packets 
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Non-Linear Interpolation 

  Need to consider several aspects 
  Object movement is not linear, so could use quadric, 

cubic, etc. by keeping three or more updates 
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Playout Delays 

  Note that jitter is not uniform, you need to be 
conservative about how long to wait (if a packet is 
late you have no more information to interpolate, so 
the object freezes) 

  NVEs and NGs thus sometimes use a playout delay 
  Note that if you use a playout delay on the clients 

own input, then all clients will see roughly the same 
thing at the same time! 

  A strongly related technique is bucket 
synchronisation, pioneered in the seminal MiMaze 
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PERCEPTION FILTERS 



Perception Filters 

  In these techniques, the progress of time is altered 
at different clients 

  Clients choose to predict ahead or delay playout 
depending on the meaning and their expected 
interaction 
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CASE STUDY: BURNOUT ™ PARADISE 



Burnout™ Paradise 
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  Scalability 
  - Management of awareness 
  - Interest specification 
  - Server partitioning 



GOALS FOR SCALABILITY 



Interest Specification 

  A user is NOT an omniscient being 
  A user is NOT interested in every event 
  A client is NOT able to process everything 

•  Just give each client enough to instil the user’s 
illusion of an alternate reality 
•  Interest: visibility, awareness, functional, … 
•  Network and computational constraints  



Awareness Categories 

  Primary awareness 
 Those users you are collaborating with 
 Typically near by, typically highest bandwidth 

available 

  Secondary awareness 
 Those users that you might see in the distance or nearby 
 Can in principle interact with them within a few seconds 

by movement 

  Tertiary awareness 
 All other users accessible from same system (e.g. by 

teleporting to them) 



System Goals 

  Attempt to keep  
 overall system utilization to a manageable level 
 client inbound bandwidth at a manageable level 
 client outbound bandwidth to a manageable level 

  To do this 
 Have clients discard received information 
 Have the system manage awareness 
 Have clients generate information at different levels of 

detail 



Managing Awareness 

  A complex distributed problem 
  Users’ expressions of interest in receiving 

information balanced against system’s and other 
clients’ capabilities 

  Awareness scheme is partly dependent on the 
networking architecture, but most awareness 
management schemes can be applied to different 
architectures 

  Spatial layout is the primary moderating factor on 
awareness  
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SPATIAL PARTITIONING 



Spatial Partitions 

  Global Partitions 
 Static Grid 
 Hierarchical Grid 
 Locales 

  Local Partitions 
 Aura 
 Visibility 
 Nearest Neighbours 



Global Partitions: Static Cells 

•  1 Cell = 1 Group 

•  Hexagon regular shape 

•  Tied into the grid – static 

•  Send current cell 

•  Receive neighbours 

•  Any architecture (distributed) 



Global Partitions: Hierarchal Grid 

•  1 Cell = 1 Group 

•  Square cells 

•  Send current cell 

•  Receive current cell 

•  Any architecture (distributed) 

•  Exceeds threshold, expand 

Threshold = 5 



Global Partitions: Irregular 



Global Partitions: Locales 

•  1 locale = 1 group 

•  Locale is arbitrary shape 

•  Locale placement is static 

•  Associated transform matrix 

•  Any architecture (distributed) 
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Global Partitions: Locales 

•  1 locale = 1 group 

•  Locale is arbitrary shape 

•  Locale placement is static 

•  Associated transform matrix 

•  Any architecture (distributed) 



Local Partitions: Aura, Focus, Nimbus 

  Instead of grouping users by a global cell, group by 
their own interest overlap 

  Aura, Focus, Nimbus (Spatial Model) pioneered in 
the MASSIVE and DIVE systems 
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Local Partitions: Auras 



UserA UserB 

Local Partitions: Auras 



Local Partitions: Visibility 

B 

•  Line of sight 

•  Entity visible = group 

•  Client/Server 

A 

C 



Local Partitions: Visibility 

  In real environment our focus is most severely limited 
by the physical environment: we can’t see around 
walls, we can’t hear (or see) over long distances 



A B C 

D E F 

G H I 

A 

B 
C 

F 
E 

D 

G H I 

Cells Portals 

Local Partitions: Visibility 
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Spatial Partitions: Visibility 
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Spatial Partitions: Visibility 



Local Partitions: Nearest Neighbours 

•  1 group = quorum 

•  Computational/Network 
constraints 

•  Client/Server  



Local Partitions: Nearest Neighbours 

•  1 group = quorum 

•  Computational/Network 
constraints 

•  Client/Server  



MANAGING HANDOVER 



SERVER INTERACTIONS 



Server Interactions 

  Server system introduce two big problems 
  How do two proximate users on adjacent servers 

interact? 
 Sometimes just not allowed – long twisty roads between 

server regions where you never meet other players 

  How do you actually hand over a player from one 
server to another 
 Need to move responsibility for interaction 
 Possibilities needs new network connections 
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MULTI-SERVER MANAGEMENT 



Practical Systems 

  A system such as Second Life™ utilizes a regular 
grid layout with one server per region 
 Regions are laid out on a mostly-contiguous map 

  However is a game session, far too many players 
want to access a specific game content 

  A game shard is a complete copy of a system, you 
connect to one system and see one player cohort 

  A game instance is similar, but is replication of a 
particular area (e.g. dungeon) to support one group 
of players within a cohort. Often created on 
demand. 
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SUMMARY 



  Latency and dealing with time is a huge issue in 
NVEs and NGs with a variety of solutions 
 Conservative solutions v. rollback v.playout delays 
 Choice depends on game play 

  Scalability depends on a choice of awareness 
mechanism 
 Requires a logical scalability mechanism 
 Partitioning over users 

  Part 4 will look at application support, tools and 
future research issues 


